半導体レーザ駆動制御技術を専門に周辺制御機器の企画開発製造
レーザ(Laser)とは、放射の誘導放出による光増(LightAmplification by Stimulated Emission of Radiation)の頭文字を取ったもので、共振器を用いて光(電磁波)を増幅して得られる人工的な光事を言います。
レーザの原理はとは通常、原子・分子は、ある特定のエネルギーをもって運動しています。外部からエネルギーをもらうと、これらの原子や分子はさらに高いエネルギーをもって運動します。これを励起状態といいます。しばらくすると原子や分子は、その余分なエネルギーを吐き出し、元のエネルギー状態に戻ろうとします。そのとき、吐き出された余分なエネルギーは光となって外部へ放出されます。これを「自然放出」といいます。この光が他の高いエネルギーをもった原子や分子に衝突すると、そこから同じ性質の光が放出されます。これを「誘導放出」といいます。通常、高いエネルギーを持つ原子や分子の数は少ないので、放出される光は非常に弱いのですが、何らかの方法で高いエネルギーをもった原子や分子の数を多くさせると、誘導放出がなだれ現象的に起こり、強力な光が放出されます。これが光の増幅です。さらに、ある条件の中で鏡を向かい合わせに置き(共振器といいます)、放出された光を繰り返し反射させると、光は特定の方向に増幅され、更に強力な光となります。これがレーザの原理です。
半導体レーザは、上記原理を半導体のpn接合構成により接合部に電流を注入することで多数の電子・正孔対を生成し、それらが再結合する際の発光を利用してレーザ発振している。構造としては、電子と正孔の再結合が生じる活性層を、よりバンドギャップの大きいp型とn型の半導体で挟んだダブルへテロ構造がよく用いられている。
レーザ発振のためには、光を共振させるための共振器が必要となる。半導体レーザでの共振器の構成法としては、主に、共振器を半導体基板面と平行に構成し、へき開面から光を取り出す端面発光型と、半導体基板面と垂直に共振器を構成した面発光型が用いられている。
半導体レーザの外部に共振器を設けたものもある。
■半導体レーザの発振と特徴
半導体レーザ他のタイプレーザと比較しますと小型、高効率、低電圧低消費電力、超寿命などの性質をもっており、光エレクトロニクス分野で幅広く使われている。半導体レーザはダイオードレーザと呼ばれる事も有り、発光ダイオード(LED)がその基礎となっている。
発光ダイオード(LED)の発光原理
LED光の色の違い
下図は半導体材料によって発光波長が異なることを説明する図です。p-n接合でのホールと電子の結合は電子がエネルギーの高い伝導帯からエネルギーの低い価電子帯に落ちることによっておこります。このエネルギー差が大きいほどよりエネルギーの高い光、即ち波長の短い光が放出されます。エネルギー差(禁制帯の幅)は半導体の材料で異なっていますので発光させたい色に合う禁制帯の材料を選んで発光ダイオード(LED)を作ります。図2では青色と緑色の材料がどちらもInGaNになっていますが、In/Gaの比率を変えて発光色を調節します。
白色LEDの発光の仕組
発光ダイオード(LED)で白色を発光させる仕組みには図3に示すような3通りがあります。
① 青色LEDと黄色を発光する蛍光体の組み合わせです。黄色は青色の補色ですので青色と黄色が混ざって白色にみえます。この方法は簡単で、光も強いので最も普及していますが少し青みがかってみえるのが欠点です。
② 紫外LEDで青、緑、赤の蛍光体を発光させる方法です。自然できれいな白色光に見えますが、まだ、①の方法ほど強い光をだすことができません。
③ 青、緑、赤3個のLEDを発光させる方法です。光が強くフルカラーを発光できるのでディスプレイの照明やLEDスクリーンなどに使われています。
発光ダイオード(LED)と半導体レーザ(LD)の違い
発光ダイオード(LED)とよく似た半導体発光素子に半導体レーザ(LD)があります。この二つはどこが違うのでしょうか。p-n接合で電子とホールが結合して発光する原理は同じですが、出てくる光の性質は異なります。LEDの光は電球に近く位相がバラバラなので広がっていきますが、LDの光は位相が揃ってるため真っ直ぐ進む光線になります。この違いは、LEDでは発光した光をそのまま外部に出すのに対し、LDでは位相を揃える工夫がしてあるためです。また、LDでは狭い発光層の端面から光がでるので光ファイバーに入射しやすいですが、LEDの光は広い発光層の面全体からでるのでコア径の小さなファイバに入射するのが難しいという違いもあります。
■半導体レーザは、反転分布をどの様に可能にする
誘導放射が起こりやすくするために、エネルギーの低い価電子帯の電子の数に対して、エネルギーの高い伝導帯にある電子の割合が大きい状態を反転分布と呼ぶことはこれまでに述べたとおりだ。
ルビーレーザーの場合は、反転分布を可能にするために、キセノンランプを使っていた。しかし、半導体レーザーではこのような方法は使わずに、ある方法で伝導帯に電子を注入する。大型で消費電力の大きいキセノンランプなどを使わないことが、半導体レーザーの小型、低消費電力を可能にする理由でもある。
半導体レーザーにも様々なタイプがあるが、一般的に使われているのはダブルへテロ接合と呼ばれる構造の以下の図のものである。
ダブルへテロ接合は図のようなサンドイッチ構造になっている。バンドギャップの大きいP型とN型のクラッド層(被覆層)で、バンドギャップの小さい活性層を挟んだかたちとなっている。クラッド層に設けられた外部電極から順方向に電圧をかけると、P型クラッド層から活性層に正孔が、N型クラッド層から活性層に電子が注入される。したがって、活性層は反転分布の状態にある。ここでは、効率よく誘導放射が起こる。
半導体レーザーのレーザー発振
発光ダイオードと半導体レーザーの最大の違いは、このレーザー発振があるかないかにある。ルビーレーザーは合わせ鏡の構造になっていたが、半導体レーザーの場合も合わせ鏡の構造になっている。
上図にあるように、活性層の両側面は屈折率の違いから反射鏡になっている(へき開面)。また、活性層とクラッド層との間でも屈折率の違いに全反射し、クラッド層に光が漏れにくい。この二つの点から光は活性層に閉じ込められ、誘導放射を繰り返すうちに光が増幅されレーザー光として外部に放出される。こうして反射ループが平衡状態に達するとレーザーが連続発振に達する。
初めて半導体レーザ(LD)に触れる方に、容易に活用出来る様、基礎知識からプロに求められるLD応用製品の開発、製造に必要なLD制御機器、LD制御用光学部材、電気部品及び制御ソフトを含むLD応用システム機器を提供。
長期に安定した半導体レーザーシステムを構築する上で必要な情報を提供致します。 また、半導体レーザの一般的な性能、注意事項、使用情報について記載していますが、 用途によってはシステム構成が大きく異な事も有り、個々の具体的な事柄については触れていません。 しかしこの解説や取扱い情報には、長期間、安定して動作するシステムの構築に必要な条件を取りまとめて居ます。
半導体レーザーシステムの構築に関する主要パラメータである波長、光出力、そしてパッケージスタイルが決まります。 主要パラメータが決まったら、次に選択するのは半導体レーザ用マウントとマウントに接続するドライバやコントローラなどで、次いで、実験環境における設置方法となります。 この解説を読んでいただくと、半導体レーザーシステムの構築には多くの事柄を念頭におく必要があることがわかると思います。 その記載量は多く、すべて理解するには時間を要すと思いますが、 適切に、半導体レーザを用いたシステムを構築し、取り扱い、設備を選択し、使用することにより、長期にわたり再現性動作を繰り返しさせても安定した性能がもたらされます。
ハーメチック
貫通端子
フロリナート液、
真空装置用途
フロリナート液、
真空装置用途
静電気に弱いレーザーダイオードは製造工程においてLD素子の取り扱いは、直接製造歩留まりを左右する要になります。
左記写真に紹介しますLDホルダーはLDのPINアームを傷つけず通電テスト及び変調特性等の検査を可能にした LDホルダー治具ですです。
ホルダー治具の製作は、全てオリジナル治具とし、設計から承ります。
詳しくは写真をクリック下さい。
キャンタイプLD用コネクター
3PIN型:KLC-A3P(φ5.6用)KLC-B3P(φ9用)
4PIN型:KLC-A4P(φ5.6用)KLC-B4P(φ9用)
バタフライタイプLD用コネクター
KLC-B7P
ディプタイプLD用コネクター
KLC-A14P
その他GT用ソケットあるいは、パワーLDからの発熱を考慮した ヒートシンク内にコネクターを埋め込んだ特注製品も承っています。
温度コントローラとは温度センサーから得た抵抗変化をPID制御によりペルチェに流れる電流を制御し任意の定められた温度を外部要因に係らず保つ事を可能としたペルチェ制御装置を温度コントローラとし推奨致します。詳細記事
サーミスタは金属酸化物の粉末を定められた割合で、調合し高圧プレスで成型後焼き固め製作されます。感度は熱電対,Ptその他多くの温度センサーに比べて格段に敏感です。さらにサーミスタは構造にもよりますが、時定数が小さく、堅牢であることです。そのため計測温度範囲内での安定度は抜群です。繰り返し精度及び経年変化も非常に少ないものなので長期に安定し使用することが可能です。この繰り返し精度が安定していることを利用して絶対精度の悪いセンサでも使用全域に渡り絶対精度を補正する自動キャリブレート回路を組むことで更なる高精度な計測が可能になります。詳しくは写真をクリック下さい。
製作された部品の倒れ角及び方向誤差をモニター上に表示させ部品又は製品の合否判定にご使用下さい。本平行光測定器には、平行光基準光が内蔵され被測定物の倒れ及び方向をコンピューター上で三角法による演算を行わせ、得られた値と基準源基に対する誤差を倒れ角度と倒れ方位を時計方位で表現しています。光ピックアップ等の生産工程で検査器としてご使用戴きます。 詳細記事
光学ディバイス製造工程におけるトラッキング特性、研究開発作業での物性の 温度特性評価用に大変小型な卓上型の恒温槽です。恒温槽外部から光を入力し恒温槽内被測定物を 通過した光を恒温槽外部で受光可能な二重透過窓を装備。
槽内の温度は、-50℃~+200℃まで対応いたします。温度制御精度1/100℃までの精度及び分解能を 確保することができます。
本システム構築要素には、ペルチェ・ヒーター・温度センサー(サーミスター・白金)・チラー 等を用い、これらを弊社製温度コントロールシステムで制御しています。
被測定物に合わせ恒温槽内の設計を承りますので、お気軽に弊社技術にご相談下さい。